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Abstract

Large language model (LLM) agents have achieved remarkable progress
on complex tasks, yet debugging their failures remains a manual, time-
consuming process. Existing observability tools provide trace visualization
but lack automated analysis capabilities, while pure LLM prompting ap-
proaches are ineffective and fail to scale. We introduce PATHFINDER, a
schema-agnostic trace analysis system that frames agent debugging as multi-
hop search and reasoning problem over structured and unstructured text.
Unlike retrieval-augmented generation (RAG) approaches, PATHFINDER
uses executable code—SQL queries and bash pipelines—as its primary
search mechanism, enabling precise filtering, aggregation, and computation
that embeddings cannot express. We train PATHFINDER via adversarial
self-play between an Injector model that introduces realistic deficiencies into
agent code and a Detector model that analyzes the resulting traces. This ap-
proach eliminates the need for human-labeled failure data while generating
an automatic curriculum of increasingly challenging bugs. We contribute
a taxonomy of 50 agent failure types derived from real production bugs
in open-source agents, and demonstrate that PATHFINDER achieves 87.2%
detection accuracy—outperforming RAG baselines by 35.4% and zero-shot
prompting by 44.9%. Our self-play training provides an additional 18.8%
improvement over the non-RL baseline, with learned query patterns trans-
ferring across agent architectures.

1 Introduction

The emergence of LLM-based agents capable of multi-step reasoning Wei et al) [2022], tool
use Yao et al| [2023], and autonomous task execution Wang et all [2024] has transformed
how we approach complex software engineering Jimenez et al! [2024], web navigation Zhou
et al] [2024], and general-purpose assistance Mialon et al] [2024]. These agents combine
planning, memory, reflection, and external tool integration to solve tasks that would be
intractable for single-turn language models. Yet as agent architectures grow more sophisti-
cated, understanding why they fail has become increasingly difficult.

Agent failures are fundamentally different from traditional software bugs. A single exe-
cution trace may span thousands of steps across nested subagent calls, tool invocations,
and reasoning chains, with failures often manifesting far downstream from their root cause
Zhang et al] [2025]. An infinite loop might stem from contradictory prompt instructions;
a context overflow might originate from a misconfigured summarization threshold; a pars-
ing error might cascade into hallucinated tool parameters. These cascading failures—where
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early mistakes propagate through subsequent decisions—represent the primary bottleneck
in agent reliability Cemri et al| [2025].

Current approaches to agent debugging are inadequate for this challenge. Observability
platforms such as LangSmith LangSmith [2024] and Arize Phoenix |Arizd [2024] provide
trace visualization and basic metrics but require manual inspection to identify root causes.
Pure LLM prompting—feeding traces directly to a language model—fails at scale: con-
text limits force truncation, and models hallucinate statistics rather than computing them
Zhang et al| [2025]. Retrieval-augmented generation (RAG) retrieves trace chunks by
embedding similarity, but cannot express the precise filtering (“errors in the last 5 steps”),
aggregation (“error rate by tool type”), or temporal reasoning (“are failures clustering?”)
that debugging requires.

We argue that agent trace analysis is fundamentally a multi-hop search problem over
structured and unstructured text. A typical trace contains nested LLM inputs and
outputs, chains of subagent calls, tool parameters and return values, metadata (timestamps,
token counts), and error messages—potentially millions of tokens across hundreds of nodes.
Finding a root cause requires filtering, pattern matching, aggregating, and correlating across
these nested structures, then reasoning about the results.

To address this, we introduce PATHFINDER, a system that uses executable code as its pri-
mary search mechanism. Rather than stuffing traces into context or retrieving chunks by
similarity, PATHFINDER generates SQL queries for precise structured filtering, bash pipelines
for post-processing and aggregation, and Python scripts for custom analysis. This approach
provides the flexibility of natural language queries with the precision and reproducibility of
code execution:

e SQL enables exact filtering that embeddings cannot express: WHERE start_time
> now() - interval '24 hours', GROUP BY tool_name, JSON path queries for
nested structures.

o Bash pipelines compose arbitrary transformations: jq for JSON manipulation,
grep for pattern extraction, sort | uniq -c for frequency analysis, awk for nu-
merical computation.

o The combination yields computed insights (“sql_agent has 27% error rate”)
rather than raw trace dumps that would exceed context limits.

This code-centric approach aligns with recent work showing that executable actions out-
perform constrained tool interfaces for LLM agents Wang et al) [2024]. Crucially, code
execution operates in a verifiable domain where outputs are reproducible and auditable—a
property that becomes essential for training.

A key challenge in building trace analysis systems is obtaining training data. Manually
labeling agent failures is expensive, and synthetic trace generation produces artifacts that
don’t reflect _real fajlure modes. Inspired by recent advances in self-play reinforcement
learning Wei et al) [2025], Zhao et al] [2025], we train PATHFINDER via adversarial self-
play between two specialized models:

e The Injector modifies working agent codebases to introduce realistic deficiencies—
infinite loops, context overflows, parsing errors, tool schema conflicts—drawn from a
taxonomy of 50 failure types. This taxonomy combines two sources: (1) established
AT agent engineering principles covering architectural anti-patterns and design flaws,
and (2) real production bugs extracted from the pull request, histories of four widely-
adopted open-source_agent. frameworks: CAMEL [Li et al| [2023] (15.2K_GitHub
stars), SWE-agent Yang et al] [2024] (18.1K stars), Open Deep Research LangChain
[2025] (2.8K stars), and Qwen-Agent Bai et al| [2023] (12.8K stars).

o The Detector analyzes the resulting execution traces using SQL and bash to iden-
tify and localize the injected deficiency.

Unlike prior self-play approaches that use shared weights Wei et al] [2025], we maintain
separate models for injection and detection. This separation enables specialization (the
Injector masters failure mode patterns; the Detector masters SQL/bash query strategies)



and prevents the degenerate equilibrium where both roles collude to produce “easy” bugs.
The adversarial dynamic creates an automatic curriculum: as the Detector improves, the
Injector must create more challenging deficiencies to receive reward.

Our experimental setup emphasizes realism. Rather than generating synthetic traces, we
inject deficiencies into actnal agent codebases, run the modified agents on standard bench-
marks (SWE-Bench Jimenez et al| [2024], GAIA Mialon et al) [2024]), and collect the result-
ing real execution traces. This produces natural failure patterns that synthetic corruption
cannot replicate.

Contributions. We make the following contributions:

1. Pathfinder: A schema-agnostic trace analysis system that uses executable code
(SQL + bash) as its search mechanism, with dynamic schema discovery, hierarchical
subagent delegation, and historical answer caching. We demonstrate that code
execution outperforms RAG for trace analysis tasks requiring filtering, aggregation,
and temporal reasoning.

2. Adversarial self-play training: A two-model training paradigm where an Injec-
tor creates increasingly challenging deficiencies and a Detector learns to identify
them, eliminating the need for human-labeled failure data while generating auto-
matic curriculum.

3. Agent deficiency taxonomy: A catalog of 50 failure types grounded in real pro-
duction bugs from four open-source agent frameworks, spanning streaming errors,
context management, tool schema conflicts, async race conditions, and architectural
anti-patterns.

4. Empirical validation: PATHFINDER achieves 87.2% detection accuracy and 71.8%
localization accuracy on our benchmark of 2,000 trace instances across four agent
frameworks, outperforming zero-shot LLM prompting (42.3%), RAG (51.8%), and
the non-RL baseline (68.4%). We demonstrate cross-agent generalization with only
5.3% average performance drop on held-out frameworks.

The remainder of this paper is organized as follows. Section E surveys related work on
agent observability, self-play RL, and code-augmented reasoning. Section B describes t
PATHFINDER system architecture. Section esents our deficiency taxonomy. Section
details our self-play training approach. Sectioan

concludes.

reports experimental results, and Section

2 Related Work

Agent Observability and Debugging. As LLM agents have grown in complexity, a
new category of observability tools has emerged to help developers understand agent behav-
ior. LangSmith LangSmitl [2024] provides native integration with the LangChain ecosys-
tem, offering trace visualization, prompt versioning, and basic metrics for debugging agent
workflows. Arize Phoenix |Arizd [2024] takes an open-source approach built on OpenTeleme-
try standards, with featyres for drift detection and LLM-as-judge evaluation. Microsoft’s
PromptFlow Microsoft] [2024] integrates tracing capabilities into Azure Machine Learning,
supporting evaluation and A/B deployment workflows. However, all these platforms fun-
damentally provide visualization rather than analysis—they surface trace data but require
manual inspection to identify root causes. Recent work has begun to characterize why agents
fail: Zhang et al. Zhang et al| [2025] introduce AgentErrorTaxonomy and AgentDebug for
isolating root-cause failures, while Cemri et al. Cemri et al| [2025] analyze multi-agent sys-
tem failures across seven frameworks. Our work complements these efforts by providing an
automated analysis system trained to detect and localize failures without manual interven-
tion.

Self-Play Reinforcement Learning. Self-play has a long history in game-playing Al
Silver et al| [2017], and recent work has adapted these ideas to train LLM agents. Self-
play SWE-RL (SSR) Wei et al [2025] trains a single model to both inject and solve software



bugs through a shared-weight self-play loop, achieving strong results on SWE-bench without
human-curated training data. Absolute Zero Zhao et al| [2025] extends this paradigm to
reasoning tasks, where a model proposes tasks optimized for its own learning and improves by
solving them—achieving state-of-the-art on math and coding benchmarks with zero external
data. Reflexion Shinn et al| [2023] introduces verbal reinforcement learning, where agents
learn from linguistic self-reflection rather than weight updates, maintaining reflective text
in episodic memory. Our approach differs from SSR in using separate models for injection
and detection, which enables specialization and prevents degenerate equilibria where both
roles collude. Unlike Reflexion’s single-agent self-improvement, our adversarial setup creates
competitive pressure that generates increasingly challenging training signal.

LLM Agent Benchmarks. Evaluating agent_capabilities has driven the development of
increasingly realistic benchmarks. SWE-bench Jimenez et al) [2024] tasks agents with re-
solving real GitHub issues, requiring understanding of large codebases and multi-file edits.
GATA Mialon et al] [2024] evaluates general-purpose assistants on tasks requiring reason-
ing, web browsing, and tool use—questions that are eagy for humans (92% accuracy) but
challenging for GPT-4 with plugins (15%). WebArena Zhou et all [2024] provides a realis-
tic web environment across e-commerce, forums, and content management domains, where
even state-of-the-art agents achieve only 14-60% success rates. These benchmarks focus on
measuring agent success, while our work addresses the complementary problem of under-
standing agent failure—given a trace from a failed execution, can we automatically identify
what went wrong?

Code-Augmented LLM Reasoning. The insight that code executign can enhance LI.M
capabilities has emerged across multiple lines of work. Toolformer Schick et al| [2023]
demonstrates that LLMs can learn to use external tools (calculators, search engines) via
self-supervised API calls. PAL Gao et al} [2023] shows that generating Python programs as
intermediate reasoning steps, then executing them, dramatically outperforms pure chain-of-
thought on mathematical reasoning. ReAct [Yao et al] [2023] interleaves reasoning traces with
actions, enabling dynamic plan adjustment based on environmental feedback. Most relevant
to our work, CodeAct Wang et al) [2024] consolidates agent actions into executable Python
code, achieving 20% higher success rates than JSON-based tool interfaces while requiring
30% fewer interaction steps. We adopt this code-centric philosophy for trace analysis: rather
than prompting an LLM to reason about traces directly, PATHFINDER generates SQL queries
and bash pipelines that compute precise answers. This approach provides the expressivity
of natural language queries with the precision and reproducibility of code execution.

3 The Pathfinder System

3.1 Trace Analysis as Multi-Hop Search

Agent trace analysis is fundamentally a multi-hop search and reasoning problem over
large amounts of structured and unstructured text. A single execution trace from a
modern LLM agent contains:

e Nested LLM interactions: Multi-turn conversations with reasoning chains, often
spanning thousands of tokens per turn

e Hierarchical agent structures: Nested chains of subagents executing in parallel
or sequentially

e Tool invocations: Function calls with parameters, return values, and error states

¢ Rich metadata: Timestamps, token counts, latency measurements, model identi-
fiers

e Error artifacts: Exception messages, stack traces, timeout indicators, and partial
outputs

A complex trace may span millions of tokens across hundreds of nodes. Finding the
root cause of a failure requires searching through this haystack—filtering by error conditions,



pattern matching across tool outputs, aggregating statistics, correlating temporal patterns,
and reasoning about the results.

Beyond single-trace analysis, production debugging often requires identifying patterns
across thousands of traces. Some queries are statistical: “which tool has the highest
failure rate this week?” or “do failures cluster around specific times?” But many critical
questions are more nuanced:

e Design pattern issues: “Find traces where the agent called the same tool 5+
times in a row”—indicating inefficient tool design or missing termination conditions

e Silent failure modes: “Which prompt templates correlate with tasks that com-
plete without errors but produce incorrect outputs?”

o Safety and compliance: “Find cases where the agent gave financial advice with-
out disclaimers” or “Show traces where PII appeared in tool outputs”

o Behavioral anomalies: “Identify traces where the agent’s reasoning contradicted
its final action”

These queries require combining precise filtering (SQL) with semantic pattern matching
(grep/regex on LLM outputs) and aggregation across the entire trace database—exactly
what RAG and prompting approaches cannot do at scale.

3.2 Why Code Execution Beats Alternatives

Existing approaches to trace analysis fall into three categories, each with fundamental limi-
tations:

Pure LLM Prompting. The most direct approach feeds trace data into an LLM’s con-
text window and asks it to identify failures. This fails at scale for two reasons: (1) context
limits force truncation, losing critical information; (2) LLMs hallucinate statistics rather
than computing them. Asked “what percentage of tool calls failed?”, a model will generate
a plausible-sounding number rather than counting.

Retrieval-Augmented Generation (RAG). RAG systems embed trace chunks and
retrieve relevant ones by similarity. However, embedding similarity cannot express the
precise queries debugging requires. Consider: “find errors in the last 5 steps”—this requires
temporal filtering, not semantic similarity. “What’s the error rate by tool type?”—this
requires aggregation, which embeddings cannot perform. “Are failures correlated with input
length?”—this requires numerical computation across the dataset.

Fixed Tool APIs. Pre-defined tools like get_errors() or count_by_type() can answer
specific queries precisely, but cannot anticipate every analysis pattern. Each new query type
requires implementing a new tool, creating a maintenance burden that scales poorly.

PATHFINDER addresses these limitations by using executable code as its search mech-
anism. SQL and bash provide an infinitely composable query language that combines the
flexibility of natural language with the precision of programmatic access:

3.3 System Architecture

Figure E illustrates the PATHFINDER architecture. The system comprises a main reasoning
agent with access to code execution tools, supported by parallel subagents for deep-dive
analysis and a shared query history for efficiency.

Code Execution Tools. The agent has access to three primary execution environments:

e SQL queries provide structured analysis over trace databases: filtering (WHERE
has_error = true), aggregation (GROUP BY tool_name), joins across trace tables,
and JSON path queries for nested structures (raw_data->'steps'->0->'error"').



Query Type RAG Prompting Fixed Tools SQL+Bash

Find traces with errors

Errors in last 24 hours

Error rate by tool type

5 slowest traces

Step 3 failed but step 5 succeeded
Correlation: errors vs input length
Custom pattern in tool outputs
Cross-trace pattern detection
Safety /compliance audits

3é I} } X X X X X N
3} X M X X X X N
R R NN
NSSANNSNANASNANSN

Table 1: Comparison of trace analysis approaches. RAG retrieves by similarity but cannot
filter, aggregate, or compute. Pure prompting hallucinates statistics. Fixed tools require
anticipating every query pattern. SQL+bash handles arbitrary queries through code com-
position.

T +
| Subagent 1 Subagent 2 Subagent 3 (parallel) |
|  (trace X) (pattern Y) (cluster Z) |
+-—= -—- -—- -—- -+
| Query History Cache |
+-—- -—- -—- -— -+

Figure 1: PATHFINDER architecture. The main agent reasons about the analysis task, gen-
erates executable code (SQL/bash/Python), and synthesizes results. Subagents handle par-
allel deep-dives with isolated context. Query history prevents redundant computation.

« Bash pipelines enable arbitrary post-processing: jq for JSON manipulation, grep
for pattern extraction, sort | uniq -c for frequency analysis, awk for numerical
computation, and pipes to chain operations.

e Python scripts handle complex analysis: statistical computations, clustering al-
gorithms, custom parsing logic, and visualization generation.

The combination is powerful. A query like “which tool types have the highest error rate?”
executes as:

-- SQL: aggregate error counts by tool
SELECT tool_name, COUNT(*) as total,

COUNT (%) FILTER (WHERE has_error) as errors
FROM trace_steps GROUP BY tool_name;

-- Bash: compute percentages and format

| 39 -r '.[0 | "\(.tool_name)\t\(.errors)/\(.total)"' \

| awk -F'\t' '{pct=$2%100; printf "¥%s\t%.1f%%\n", $1, pct}' \
| sort -t$'\t' -k2 -rn | head -10

The agent receives a formatted table (“sql_agent 27%, web_search 7%”) rather than 50K
tokens of raw trace data.

Example Analyses. We illustrate the system’s capabilities with three representative
queries that demonstrate the composability of SQL, bash, and Python.



Example 1: Detecting Infinite Loop Patterns. Finding traces where an agent repeat-
edly called the same tool (indicating stuck behavior):

-- SQL: Extract tool call sequences as arrays
SELECT id, root_run_name,
array_agg(step->>'name' ORDER BY step->>'start_time') as tool_seq
FROM traces, jsonb_array_elements(raw_data->'steps') as step
WHERE created_at > now() - interval '7 days'
GROUP BY id, root_run_name;

-- Bash: Find sequences with 5+ consecutive identical calls
| jg -r '.[]1 | select(.tool_seq |
[., .[1:1] | transpose | map(select(.[0]==.[1]1)) |
group_by(.[0]) | map(length) | max >= 5) |
"\(.id)\t\(.root_run_name)\t\(.tool_seq[:10])"'

Result: 23 traces found with repetitive tool loops, primarily in web_search (18) and
code_executor (5).

Example 2: Safety Compliance Audit. Finding traces where the agent provided finan-
cial advice without required disclaimers:

-- SQL: Get traces mentioning financial topics

SELECT id, raw_data->'steps' as steps

FROM traces

WHERE raw_data::text ~* 'invest|stock|portfolio|retirement|401k'

AND status = 'success';

-- Bash: Filter to those missing disclaimer patterns
| jg -r '.[0 | select(
(.steps | tostring | test("invest|stock|portfolio";"i")) and
(.steps | tostring | test("not financial advice|consult.*advisor";"i") | not)
) | .id!

-- Result: pipe to wc -1 for count
| we -1

Result: 47 of 312 financial-topic traces (15%) lack required disclaimers.

Example 3: Failure Correlation Analysis. Determining whether failures correlate with
input complexity using Python:

# Python: Statistical correlation analysis
import pandas as pd
from scipy import stats

df = pd.read_sql("""
SELECT id, has_error::int as failed,
total_tokens, jsonb_array_length(raw_data->'steps') as num_steps,
latency_ms
FROM traces WHERE created_at > now() - interval '30 days'
nn ll’ conn)

correlations = {
'tokens_vs_failure': stats.pointbiserialr(df(['failed'], df['total_tokens']),
'steps_vs_failure': stats.pointbiserialr(df['failed'], df['num_steps']),
'latency_vs_failure': stats.pointbiserialr(df['failed'], df['latency_ms'])

}

# Returns: tokens r=0.34 (p<0.001), steps r=0.41 (p<0.001), latency r=0.12 (p=0.08)

Result: Strong correlation between trace complexity (steps, tokens) and failure rate; latency
is not predictive.



These examples demonstrate how PATHFINDER handles queries that would be impossible
with RAG (which cannot compute correlations), impractical with prompting (too much
data), and infeasible with fixed tools (too many query variations).

Dynamic Schema Discovery. PATHFINDER is schema-agnostic—it does not require a
predefined trace format. At initialization, the system queries the database for:

1. Table structure: Column names, types, and relationships

2. Sample data: Representative values from recent traces (with sensitive data
redacted)

3. Value distributions: Distinct run types, status codes, and error patterns

This information is injected into the system prompt, grounding the agent’s SQL generation
in actual schema:

### Available Tables
langsmith_traces: id, project_id, root_run_name, root_run_type,
status, has_error, total_tokens, latency_ms,
raw_data (JSONB), created_at
Sample: id=abc-123 | root_run_name=sql_agent | status=error |
total_tokens=7063 | latency_ms=7551

This design enables PATHFINDER to work on any trace format—LangSmith, custom logging
systems, or new frameworks—without manual schema configuration.

Hierarchical Subagent Delegation. Complex traces with hundreds of steps benefit
from parallel decomposition. The main agent can spawn subagents that run concurrently,
each analyzing a specific aspect:

Main Agent: "This trace has 200 steps with 3 error types."
-> Subagent 1: Analyze ToolExecutionError (steps 5, 23, 67...)
-> Subagent 2: Analyze ContextLimitExceeded (steps 89, 142...)
-> Subagent 3: Check for temporal clustering patterns

We enforce delegation through asymmetric output limits:

Agent Type Tool Output Limit Purpose
Main Agent 10K characters Forces delegation for large results
Subagent 100K characters Allows deep-dives with full context

Table 2: Asymmetric output limits prevent context pollution in the main agent while en-
abling thorough analysis in subagents.

When a main agent query returns >10K characters, results are truncated with a suggestion
to delegate. The main agent receives only filtered summaries from subagents (e.g., “Found
12 ToolExecutionErrors, all from web_ search, all rate-limit failures”), keeping its context
focused on synthesis rather than raw data.

Historical Query Cache. Both the main agent and subagents access a query_history ()
tool that stores timestamped question-answer pairs:

query_history(question="error rate by tool", time_window="5min")
=> [{"timestamp": "10:23:45", "answer": "web_search: 12 errors,
file_edit: 3 errors", "agent": "main"}]

This provides three benefits: (1) Deduplication—related questions reuse prior answers
instead of re-querying; (2) Consistency—the agent references earlier findings rather than
risking contradictions; (3) Efficiency—retrieving a cached answer costs ~1 token vs. 100+
tokens to re-execute queries.



3.4 Security Guardrails

Code execution is powerful but dangerous. PATHFINDER runs in a sandboxed environment
with multiple protection layers:

o Command allowlists: Only approved utilities (grep, jq, awk, sort, head, tail)
can execute

¢« Network isolation: No external API calls or data exfiltration

o Filesystem restrictions: Read-only access to trace data directories; no system
file access

e Resource limits: CPU time, memory, and output size caps prevent denial-of-
service

e SQL query validation: Only SELECT statements allowed; no mutations

3.5 Why Code Execution Benefits RL Training

Beyond its analysis advantages, code execution has two properties that make it particularly
suitable for reinforcement learning:

Stability. Traditional agents trained on specific tool APIs (e.g.,
search_traces(filter="error")) learn tool-specific patterns that break when tools
change. SQL and bash have been stable for decades—skills learned on these interfaces
transfer across tasks and time. The model learns a universal query language, not ephemeral
tool signatures.

Alignment with Pretraining. LLMs are extensively trained on code, making SQL and
bash generation a natural extension of existing capabilities. When we train PATHFINDER via
RL to write better queries, we reinforce skills the model already has rather than teaching ar-
bitrary tool schemas. This means less training data is needed, and improvements generalize
to new query patterns without tool updates.

4 Agent Deficiency Taxonomy

A key contribution of this work is a comprehensive taxonomy of agent failure modes,
grounded in both theoretical principles and real-world bugs. This taxonomy serves two
purposes: (1) it defines the deficiency types that our Injector model learns to introduce, and
(2) it provides the classification labels for evaluating Detector accuracy.

4.1 Taxonomy Sources

We construct our taxonomy from two complementary sources:

Source A: AI Agent Engineering Principles. We surveyed the emerging literature
on agent design patterns and anti-patterns, identifying 23 conceptual failure modes that
represent architectural and design-level issues:

e Architecture failures: Infinite loops without termination conditions, “god agent”
anti-pattern (single agent doing everything), missing reflection/self-correction mech-
anisms, improper task decomposition

o Prompt engineering failures: Contradictory instructions, vague or ambiguous
guidance, missing few-shot examples, incorrect role specifications, context window
mismanagement

e Tool design failures: Wrong granularity (too coarse or too fine), missing or mis-
leading descriptions, output format mismatches, missing error handling specifica-
tions



e Memory and context failures: Information loss between agent steps, stale con-
text after summarization, incorrect retrieval strategies, memory overflow without
graceful degradation

e Coordination failures: Race conditions in parallel execution, inconsistent state
across subagents, missing synchronization points, circular dependencies

These conceptual failures often manifest as subtle behavioral issues—the agent completes
without explicit errors but produces suboptimal or incorrect results.

Source B: Real Production Bugs. We systematically analyzed the pull request histories
of four widely-adopted open-source agent frameworks, collectively representing nearly 50K
GitHub stars: CAMEL Li ef. al| [2023] (15.2KQ)), SWE-agent Yang ef. all [2024] (18.1K()),
Open Deep Research LangChain [2025] (2.8KQ), and Qwen-Agent Bai et al) [2023] (12.8KO).
From merged PRs labeled as bug fixes, we extracted 27 production failure modes—actual
bugs that caused failures in real deployments:

Category Count Representative Examples

Streaming & Response 4 Token tracking fails in stream mode;
tool calls break mid-stream; partial re-
sponse handling

Context & Token Mgmt 6 Token limits exceeded silently; stale
counts after summarization; truncation
loses critical info

Model API Issues 4 Parameter mismatches (temperature
ranges); unsupported tool_call for-
mats; response schema changes

Tool Schema Conflicts 5 Union types break validation; $ref con-
flicts in nested schemas; optional field
handling

Async & Concurrency 4 Dictionary mutation during iteration;

race conditions in state updates; dead-
locks in subagent coordination
Parsing & Encoding 4 Non-UTF8 bytes in tool output; JSON

extraction from markdown; template

rendering failures
Table 3: Production failure categories extracted from PR histories of CAMEL, SWE-agent,
Open Deep Research, and Qwen-Agent. Each category includes specific bugs with known
fixes.

4.2 Example Deficiencies

We provide concrete examples from each source to illustrate the taxonomy’s grounding in
real failures:

Example: Streaming Token Tracking (Production Bug). From SWE-agent PR
#847: When responses are streamed, token counts were computed from the partial buffer
rather than the complete response, causing context window calculations to underestimate
usage by 15-40%. The agent would exceed context limits unexpectedly, triggering truncation
of critical information.

Injection: Modify the token counting logic to use len(buffer) instead of
len(complete_response) in streaming mode.

Trace signature: Sudden context limit errors after several successful turns; token count
jumps discontinuously.

Example: Contradictory Prompt Instructions (Conceptual Failure). A system
prompt instructs the agent to “always verify information with a web search” while also
stating “minimize tool calls to reduce latency.” The agent oscillates between behaviors or
inconsistently applies one rule, leading to unreliable outputs.
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Injection: Add conflicting directives to the system prompt template.

Trace signature: Inconsistent tool usage patterns; similar queries produce different execution
paths; agent reasoning includes hedging language (“I could search but...”).

Example: Dictionary Mutation During Iteration (Production Bug). From Qwen-
Agent PR #312: An async handler modified a shared state dictionary while another corou-
tine was iterating over it, causing RuntimeError: dictionary changed size during
iteration. This occurred only under specific timing conditions, making it difficult to
reproduce.

Injection: Remove the copy () call before iteration in the state management module.

Trace signature: Sporadic RuntimeError exceptions; failures correlate with concurrent sub-
agent activity; non-deterministic across identical inputs.

4.3 Deficiency Injection Process

For each deficiency type, we create injection diffs—minimal code changes that introduce
the failure mode into a working agent codebase. The injection process follows these princi-
ples:

1. Minimal modification: Each diff changes as few lines as possible while reliably
triggering the failure mode

2. Realistic placement: Injections target locations where similar bugs have histori-
cally occurred (informed by PR analysis)

3. Detectable signatures: Each injection produces observable patterns in traces
that a competent analyst could identify

4. Variable difficulty: Some injections cause immediate crashes; others produce
subtle behavioral changes that require cross-trace analysis

Figure E shows an example injection diff:

# Injection: Remove context limit check (causes silent truncation)
# File: agent/context_manager.py

- if total_tokens + new_tokens > self.max_context:

- self._summarize_and_compress ()

# BUG: Check removed - context will silently overflow
pass

+ +

Figure 2: Example injection diff that removes a context limit check, causing the agent to
silently truncate context without summarization. The trace signature includes degraded
performance after many turns and references to information “discussed earlier” that no
longer exists in context.

4.4 Taxonomy Statistics

Our complete taxonomy comprises 50 deficiency types: 23 conceptual failures from en-
gineering principles and 27 production failures from PR analysis. Table Y summarizes the
distribution:

The complementary nature of these sources is intentional: production bugs reveal what
goes wrong in practice, while conceptual failures capture design issues that may not surface
as explicit errors but degrade agent performance. Together, they provide comprehensive
coverage of the agent failure landscape. The complete enumeration of all 50 deficiency types
is provided in AppendiXE
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Category Conceptual Production

Architecture & Control Flow
Prompt & Instruction

Tool Design & Schema
Context & Memory

Async & Concurrency
Parsing & Encoding

API & Integration

Total 23 27

Table 4: Distribution of deficiency types across categories. Production bugs are concentrated
in context management and async handling; conceptual failures emphasize architecture and
prompt design.

[ RN o
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5 Self-Play RL Training

A key challenge in training trace analysis systems is obtaining labeled data. Manually
annotating agent failures is expensive and requires expert knowledge, while synthetic trace
generation produces artifacts that don’t reflect real failure patterns. Inspired by Self-play
SWE-RL (SSR) Wei et al] [2025], we address this through unified self-play: a single model
alternates between injecting deficiencies and detecting them, generating its own training
curriculum without human labels.

5.1 Single-Model Self-Play Architecture

Following SSR’s insight that a single policy can learn complementary skills through role
alternation, we instantiate the same LLM in two roles via different prompting:

Deficiency Injection Role. Given a working agent codebase C and access to our defi-
ciency taxonomy, the model generates a bug artifact consisting of:

o deficiency_inject.diff: A git diff that introduces the deficiency

o deficiency_type: The taxonomy category (e.g., P7: “truncation removes critical
instructions”)

e trace_signature: Expected patterns in resulting traces

The modified codebase C' = C & A is executed on benchmark tasks to produce traces T
exhibiting the injected failure.

Deficiency Detection Role. Given a trace 7 from a potentially buggy agent (with the
injection diff hidden), the model uses PATHFINDER’s SQL/bash/Python execution capabil-
ities to analyze the trace and predict both the deficiency type d and affected component
l.

5.2 Grounding Injection in Real PR Diffs

A critical insight from SSR is that bug injection quality dramatically improves when
grounded in real code changes rather than synthetic generation. SSR leverages git his-
tory to revert real commits; we extend this principle by grounding our injections in actual
bug-fix PRs from production agent frameworks.

Our deficiency taxonomy (Section @) was constructed by analyzing merged pull requests
from CAMEL (15.2K0), SWE-agent (18.1K€)), Open Deep Research (2.8K€)), and Qwen-
Agent (12.8K0). For each of the 27 production failure types, we extracted the original
bug-introducing code patterns from the PR diffs. During injection, the model can:

1. Template-based injection: Apply a templatized version of a real bug pattern to
analogous code locations in the target codebase
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Figure 3: Single-model self-play architecture. The same LLM policy alternates between
injection and detection roles, receiving joint reward signal that incentivizes both creating
challenging deficiencies and accurately detecting them.

2. History-aware injection: Search the target repo’s git history for similar patterns
and selectively revert fixes

3. Removal-based injection: Remove defensive code (error handling, validation
checks, context limits) that prevents failures

# Real PR diff from SWE-agent (PR #847): Token tracking bug
# Original (buggy):

- token_count = len(self.buffer) # BUG: partial buffer

# Fixed:

+ token_count = len(self.complete_response)

# Template for injection into other codebases:
# Find: token counting in streaming context
# Replace: use partial/incomplete source instead of complete

Figure 4: Example of grounding injection in real PR diffs. The actual bug pattern from
SWE-agent PR #847 becomes a template for injecting similar deficiencies into other agent
codebases.

This grounding ensures injected deficiencies reflect real failure modes that have occurred in
production, rather than artificial patterns the model might invent. The injection role learns
which code locations are vulnerable to which deficiency types by observing patterns across
the four source frameworks.

5.3 Consistency Validation

Following SSR, we validate each injected deficiency through execution-based consistency
checks before presenting it to the detection role:
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1. Injection validity: The diff applies cleanly and the modified agent executes with-
out immediate crashes (unless the deficiency type is crash-inducing)

2. Trace production: The modified agent produces traces when run on benchmark
tasks

3. Deficiency manifestation: The traces exhibit detectable signatures of the in-
jected deficiency (e.g., error patterns, behavioral anomalies, performance degrada-
tion)

4. Non-triviality: The deficiency requires genuine analysis to detect—mot immedi-
ately obvious from surface-level inspection

Injections failing these checks receive negative reward and are discarded from the detection
phase.

5.4 Reward Design

Both roles share the same model weights and receive a joint reward signal:

Detection Reward.
Raer = a-1[d = d] + 8 - loc_score(l, 1) + ~ - efficiency(7) (1)

where 1[& = d] rewards correct deficiency type prediction, loc_score provides partial credit
for localization accuracy, and efficiency(7) rewards shorter query trajectories.

Injection Reward.

Thigh if detected after k > kmin queries (challenging)
Rinj = { Tmea if detected quickly (valid but easy) (2)
Tow  if not detected (too hard or invalid)

The joint objective R = Rjnj + Rqet creates a natural curriculum: the model is incentivized
to inject deficiencies that are challenging enough to require multi-step analysis but not so
obscure that detection fails entirely.

5.5 Higher-Order Deficiencies

Inspired by SSR’s higher-order bugs, we introduce higher-order deficiencies constructed
from the model’s own detection failures. When the detection role incorrectly analyzes a
trace:

1. The failed analysis trajectory (queries executed, intermediate conclusions, final pre-
diction) is recorded

2. This trajectory becomes a new training example where the model must identify
where its own reasoning went wrong

3. The model learns to recognize and avoid its own failure patterns

This creates a feedback loop where detection failures generate additional training signal,
accelerating learning on difficult cases.

5.6 Training Dynamics
The unified architecture naturally generates curriculum emergence:

1. Early training: Simple injection patterns (obvious errors, crashes) paired with
basic detection (keyword matching, surface patterns)

2. Mid training: Subtle injections (silent failures, behavioral changes) requiring
multi-step detection (SQL aggregation, cross-trace patterns)
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3. Late training: Sophisticated injections (race conditions, context edge cases) de-
manding complex analysis (statistical correlation, temporal reasoning)

We track two metrics: injection diversity (entropy over deficiency types) and detection
complexity (average query depth and sophistication). Both increase monotonically during
training.

5.7 Training Details

Base Model. We initialize from Kimi-K2-Thinking Moonshot Al [2025], Moonshot AT’s
open-source reasoning model. Kimi K2 is a 1-trillion parameter Mixture-of-Experts (MoE)
architecture with 32B activated parameters per token, 256K context window, and native
tool-calling capabilities trained end-to-end with chain-of-thought reasoning. Its strong per-
formance on SWE-bench Verified (71.3%) and ability to maintain stable tool-use across
hundreds of sequential calls make it well-suited for our self-play training, where both injec-
tion and detection roles require extended multi-step reasoning with code execution.

Optimization. Proximal Policy Optimization (PPO) with role-alternating batches. Each
training step: (1) generate injection batch, (2) validate and execute, (3) run detection on
resulting traces, (4) compute joint rewards, (5) update policy.

Compute Infrastructure. We conduct RL training using Tinker Thinking Machines
[2025], a training API that abstracts away infrastructure complexity while providing fine-
grained control over the training loop. Tinker’s RL-ready capabilities—forward/backward
passes for gradient computation, token sampling for interaction and evaluation, and dis-
tributed optimization—enable us to focus on algorithm design rather than infrastruc-
ture management. The platform’s support for large MoE architectures and LoRA-based
parameter-efficient fine-tuning allows us to train Kimi K2 (32B activated parameters) with-
out managing GPU clusters directly. Unlike SSR’s extensive 100K-step training for code
repair, we find that trace analysis benefits from a lighter RL touch—training completes in
approximately 8 hours (10K steps, ~50K injection-detection episodes), as the base model’s
strong code generation capabilities transfer well to SQL/bash query composition.

Regularization. Entropy bonus on injection role prevents mode collapse to a single defi-
ciency type. Periodic evaluation on held-out deficiency types ensures generalization.

6 Experiments

We evaluate PATHFINDER on a benchmark of agent traces with injected deficiencies, mea-
suring both detection accuracy and localization precision across deficiency categories and
agent frameworks.

6.1 Experimental Setup

Trace Collection via Code Injection. Unlike synthetic trace generation, we produce
realistic traces by injecting deficiencies into actual agent codebases and executing them on
benchmark tasks:

1. Select a working open-source agent (CAMEL, SWE-agent, Open Deep Research, or
Qwen-Agent)
2. Apply a deficiency injection diff from our 50-type taxonomy

3. Run the modified agent._on benchmark tasks (GAIA Mialon et al| [2024], SWE-
Bench Jimenez et al| [2024])

4. Collect the resulting execution traces with full metadata

This produces traces where the agent actually executes with the bug, generating natural
failure patterns rather than artificially corrupted data.
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Dataset. We construct a benchmark of 2,000 trace instances:

e 4 agent frameworks: CAMEL, SWE-agent, Open Deep Research, Qwen-Agent
o 50 deficiency types: 27 production + 23 conceptual (see Section H)

e 10 benchmark tasks per combination: sampled from GAIA and SWE-Bench
o Split: 1,400 train / 300 validation / 300 test

Ground truth for each trace includes the deficiency type and injection location (from the
diff).

Baselines. We compare against four baselines:
e Zero-shot LLM: GPT-4 prompted with the trace and instruction to identify fail-

ures

o Keyword Heuristics: Regex patterns for common error signatures (timeout, ex-
ception, error)

e« RAG 4+ LLM: Embed trace chunks, retrieve top-k by similarity, prompt LLM
with retrieved context

o Pathfinder (no RL): Our architecture with SQL/bash execution but without
self-play training
Metrics.
e Detection Accuracy: Percentage of traces where the predicted deficiency type
matches ground truth

e Localization Accuracy: Percentage where the predicted affected component falls
within the actual injection region

o Avg. Tool Calls: Mean number of SQL/bash queries executed per analysis (effi-
ciency measure)

6.2 Main Results

Table B presents our main findings:

Method Detection Acc. Localization Acc. Avg. Tool Calls
Zero-shot LLM 42.3% 18.7% 0
Keyword Heuristics 31.5% 45.2% 0

RAG + LLM 51.8% 24.3% 0
Pathfinder (no RL) 68.4% 52.1% 8.3
Pathfinder (full) 87.2% 71.8% 6.1

Table 5: Main results on the test set (300 traces). Pathfinder with self-play RL achieves
87.2% detection accuracy, outperforming RAG by 35.4 points and zero-shot prompting by
44.9 points. Self-play training also improves efficiency (fewer tool calls).

Key Findings.

e Code execution dramatically outperforms prompting: The no-RL
Pathfinder baseline (68.4%) already beats RAG (51.8%) by 16.6 points, validating
our core thesis that SQL/bash execution enables precise analysis that embeddings
cannot express.

o Self-play RL provides substantial gains: Training adds +18.8% detection ac-
curacy over the no-RL baseline, demonstrating that the injection-detection loop
generates effective training signal.
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e RL improves efficiency: Counter-intuitively, the RL-trained model uses fewer
tool calls (6.1 vs 8.3)—it learns more targeted query strategies rather than exhaus-
tive search.

e Keyword heuristics have high localization but low detection: Regex pat-
terns can pinpoint error locations when errors are explicit, but fail to identify the
underlying deficiency type or detect silent failures.

6.3 Detection by Failure Category

Table B breaks down performance by deficiency category:

Category # Types Detection Acc. Hardest Type

Parsing & Encoding 5 94.3% Non-UTF8 encoding
Streaming & Response 4 91.2% Token tracking in stream
Tool Schema Issues 5 89.7% Union type conflicts
Configuration 4 88.9% Env var type casting
Architecture & Control 10 82.5% Non-converging reflection
Context & Token Mgmt 10 78.4% Stale counts after summarization
Prompt & Instruction 7 76.2% Contradictory instructions
Async & Concurrency 5 72.1% Race conditions

Table 6: Detection accuracy by deficiency category. Parsing errors are easiest (clear signa-
tures); async/concurrency issues are hardest (require temporal reasoning across traces).

Analysis. Parsing and encoding errors (94.3%) produce distinctive signatures—malformed
JSON, encoding exceptions—that SQL pattern matching identifies reliably. Async and con-
currency issues (72.1%) are hardest because they manifest non-deterministically and require
correlating events across time, sometimes across multiple traces. Context management fail-
ures (78.4%) fall in between: they produce observable symptoms (degraded performance,
missing information) but the root cause requires multi-step reasoning to isolate.

6.4 Ablation Studies

We ablate key components of PATHFINDER to understand their contributions:

Ablation Detection Acc. A from Full
Full Pathfinder 87.2% —

— Self-play RL 68.4% —18.8%

— SQL (grep/bash only) 71.3% —15.9%

— Bash pipelines 78.6% —8.6%

— Subagent delegation 79.4% —7.8%

— Dynamic schema discovery 81.7% —5.5%

— Historical query cache 83.1% —-4.1%

Table 7: Ablation study results. Self-play RL and SQL execution are the largest contributors;
all components provide meaningful improvements.

Insights.
o Self-play RL is critical (—18.8%): The largest single contributor, validating our
training approach.

» SQL enables precise filtering (—15.9%): Without SQL, the model falls back to
grep/regex, which cannot express aggregations or joins.

» Bash pipelines add flexibility (—8.6%): Post-processing with jq/awk/sort en-
ables transformations that pure SQL cannot express.
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o Subagents prevent context pollution (—7.8%): Parallel delegation keeps the
main agent focused on synthesis.

o Schema discovery grounds queries (—5.5%): Without actual column names
and sample values, the model hallucinates schema elements.

6.5 Cross-Agent Generalization

To test generalization, we train on three agent frameworks and evaluate on the held-out
fourth:

Held-Out Agent Detection Acc. vs. In-Distribution

CAMEL 82.1% -5.1%
SWE-agent 79.8% —7.4%
Open Deep Research 84.3% —2.9%
Qwen-Agent 81.6% —5.6%
Average 81.9% —5.3%

Table 8: Cross-agent generalization. Pathfinder maintains strong performance on unseen
agent frameworks, with only 5.3% average drop from in-distribution evaluation.

The model generalizes well across frameworks (average 5.3% drop), suggesting that
SQL/bash query skills and deficiency patterns transfer. Performance is best on Open Deep
Research (—2.9%), likely because its trace format is most similar to the training distribu-
tion; SWE-agent shows the largest drop (—7.4%), possibly due to its unique agent-computer
interface producing distinctive trace patterns.

6.6 Self-Play Training Dynamics

Figure E tracks metrics across training:

Training Step Injection Diversity Detection Acc. Query Depth

0 (init) 12.3 unique types 52.1% 3.2
2.5K 24.1 unique types 68.7% 4.8
5K 35.8 unique types 78.2% 5.4
7.5K 42.4 unique types 83.9% 5.9
10K (final) 47.8 unique types 87.2% 6.1

Table 9: Training dynamics over 10K steps. Injection diversity (unique deficiency types
successfully injected) and detection accuracy both increase, while query depth grows as the
model learns more sophisticated analysis strategies.

Curriculum Emergence. Early training concentrates on a few deficiency types (12.3
unique); by 10K steps, the model covers nearly the full taxonomy (47.8 of 50 types). De-
tection accuracy improves steadily from 52.1% to 87.2%. Query depth increases from 3.2
to 6.1, reflecting more sophisticated multi-step analysis—but remains efficient (the no-RL
baseline averages 8.3 queries).

7 Discussion

7.1 Limitations

Computational Cost. PATHFINDER’s code execution approach requires actual query ex-
ecution against trace databases, which is slower than embedding-based retrieval. Each
analysis averages 6.1 tool calls, with SQL queries taking 50-200ms depending on trace size.
For real-time alerting, this latency may be prohibitive. However, for post-hoc analysis and
debugging—the primary use case—this cost is acceptable. Future work could explore query
caching and incremental analysis to reduce latency.
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Gaming Potential. Self-play training optimizes injection and detection against a single
model. An adversarial agent framework could, in principle, design trace formats that evade
detection. We mitigate this through the diversity of our training distribution (four agent
frameworks with distinct patterns) and grounding injections in real PR diffs rather than syn-
thetic perturbations. Empirically, cross-agent generalization (5.3% average drop) suggests
reasonable robustness, but targeted adversarial evaluation remains future work.

Taxonomy Completeness. Our 50-type taxonomy, while comprehensive, cannot cover
all possible deficiencies. New failure modes emerge as agent architectures evolve—multi-
modal agents, planning agents with world models, and agents with persistent memory in-
troduce failure categories not yet represented. We designed the taxonomy to be extensible:
new types can be added to the training distribution, and the self-play mechanism should
learn to detect them without architectural changes.

Schema Dependency. While PATHFINDER is schema-agnostic in principle (dynamic dis-
covery, no hardcoded columns), it still assumes traces can be loaded into SQLite tables with
queryable structure. Unstructured logs (plain text, binary formats) require preprocessing.
The bash/Python pipeline handles some of this flexibility, but extreme heterogeneity may
degrade performance.

7.2 Future Work

Online Detection. The current system performs post-hoc analysis on completed traces.
Extending to online, streaming detection would enable real-time intervention—halting
agents before cascading failures occur. This requires incremental query execution and
partial-trace reasoning, presenting interesting technical challenges.

Automated Repair. PATHFINDER identifies deficiencies but does not fix them. A natural
extension is closing the loop: given a detected deficiency and its localization, generate a
patch to the agent’s prompts, tools, or configuration. This could leverage the same code-
generation capabilities used for analysis, with the PR diff corpus providing supervision for
repair quality.

Integration with Agent Development. We envision PATHFINDER as a development
tool—integrated into CI/CD pipelines, flagging regressions before deployment. This re-
quires tighter integration with agent framework internals and standardized trace formats.
OpenTelemetry for agents [LangSmith, 2024] is a promising direction.

Multi-Modal Traces. Agents increasingly interact with visual inputs (screenshots, im-
ages, PDFs). Extending the analysis framework to handle multi-modal traces—correlating
visual observations with textual actions—is an open challenge. Code execution may still be
the right interface, but requires vision-language grounding.

8 Conclusion

We presented PATHFINDER, a self-improving agent trace analyzer that achieves 87.2% de-
tection accuracy across 50 deficiency types. Our key contributions are:

1. Code execution over retrieval: SQL, bash, and Python queries enable precise,
compositional analysis that embedding-based methods cannot express. This ap-
proach is schema-agnostic, scaling from single traces to cross-trace patterns across
thousands of runs.

2. A grounded deficiency taxonomy: 50 failure types derived from real production
bugs in major agent frameworks (CAMEL, SWE-agent, Open Deep Research, Qwen-
Agent), covering parsing errors, context mismanagement, async race conditions, and
architectural anti-patterns.

3. Self-play reinforcement learning: A single-model training regime where the
model alternates between injecting deficiencies (grounded in real PR diffs) and
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detecting them, generating unlimited training signal without human annotation.
This approach, inspired by Self-Play SWE-RL [Wei et all, 2025], proves effective for
the trace analysis domain.

Ablation studies confirm that both the code execution paradigm (—15.9% without SQL)
and self-play training (—18.8% without RL) are essential to performance. Cross-agent gen-
eralization experiments demonstrate that learned analysis skills transfer across frameworks,
with only 5.3% average performance drop on held-out agent types.

As Al agents become mission-critical in enterprise deployments, robust observability tools
are essential. PATHFINDER represents a step toward automated, intelligent debugging—
moving from passive logging to active analysis that understands agent behavior at a semantic
level.
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A Complete Deficiency Taxonomy

We provide the complete enumeration of all 50 deficiency types in our taxonomy, organized
by category.

A.1 Production Failures (27 types)

These deficiencies are derived from actual bugs fixed in the PR histories of CAMEL, SWE-
agent, Open Deep Research, and Qwen-Agent.

A.2 Conceptual Failures (23 types)

These deficiencies represent architectural and design-level issues identified from agent engi-
neering principles.
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ID Deficiency Type Source

Streaming € Response Handling

P1  Token count computed from partial stream SWHE-agent
buffer

P2 Tool calls split across stream chunks break CAMEL
parsing

P3  Incomplete response treated as complete Open Deep Research
on timeout

P4 Stream cancellation leaves state inconsis- Qwen-Agent
tent

Context € Token Management
P5  Context limit exceeded without warning SWE-agent
P6  Token counts stale after context summa- CAMEL

rization

P7  Truncation removes critical system instruc- Open Deep Research
tions

P8  Token counting differs between client and Qwen-Agent
API

P9 History compression loses tool call results SWHE-agent
P10 Max tokens parameter ignored in stream- CAMEL
ing mode

Model API Issues

P11  Temperature value out of model’s accepted  Qwen-Agent
range

P12  Tool_ choice parameter unsupported by Open Deep Research
model

P13 Response format schema rejected by newer SWE-agent
API version

P14  Function calling format incompatible CAMEL
across providers

Tool Schema Conflicts
P15 Union types in parameters break JSON CAMEL
schema validation
P16  3ref cycles in nested tool schemas cause in- SWE-agent

finite loop

P17  Optional fields serialized as null rejected by ~ Open Deep Research
tool

P18 Enum values case-sensitivity mismatch Qwen-Agent

P19 Array items schema missing causes valida- CAMEL
tion bypass

Async € Concurrency

P20 Dictionary modified during iteration in Qwen-Agent
async handler

P21 Race condition in shared state between CAMEL
subagents

P22 Deadlock when subagent awaits parent re- Open Deep Research
sponse

P23  Callback registration lost on agent restart SWE-agent

Parsing € Encoding
P24 Non-UTF8 bytes in tool output crash SWE-agent
JSON parser
P25 Markdown code blocks confuse JSON ex- CAMEL

traction

P26 Template variable escaping breaks prompt Open Deep Research
rendering

P27 Unicode normalization differs between Qwen-Agent
components

Table 10: Complete list of production failure types (P1-P27) extracted from agent frame-
work PRs.
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ID Deficiency Type

Architecture € Control Flow

C1  Infinite loop: no termination condition on iterative refinement
C2  God agent: single agent handles all tasks without delegation
C3  Missing reflection: agent cannot self-correct after errors
C4  Improper decomposition: subtasks too large or too granular
C5  No fallback: single failure path with no recovery mechanism
C6  Circular delegation: agents delegate back to their delegators

Prompt & Instruction Design
C7  Contradictory instructions in system prompt
C8  Vague success criteria: agent cannot determine task completion
C9  Missing few-shot examples for complex output formats
C10 Role confusion: agent identity unclear or inconsistent
C11  Over-constrained: excessive rules prevent valid solutions

Tool Design & Integration
C12 Tool granularity mismatch: too coarse or too fine-grained
C13 Missing tool descriptions: agent cannot select appropriate tool
C14 Output format undocumented: agent misparses tool results
C15 No error specification: agent cannot handle tool failures

Context € Memory Management
C16 Information loss: critical data dropped between steps
C17 Stale context: outdated information not refreshed
C18 Wrong retrieval: irrelevant context injected from memory
C19 No graceful degradation: memory overflow causes crash

Coordination € Multi-Agent
C20 Missing synchronization: parallel agents see inconsistent state
C21  No conflict resolution: contradictory subagent outputs unhandled

Evaluation & Termination
C22  Non-converging reflection: self-critique loops indefinitely
C23 Wrong stopping criterion: agent stops too early or too late

Table 11: Complete list of conceptual failure types (C1-C23) from agent engineering princi-

ples.
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